

Research & Reviews Journal of Modern Physics

Review Article

Solving 'The Last Challenge of Modern Physics'

Paul T E Cusack, BScE

DULE 23 Park Ave. Saint John, NB E2J 1R2 Canada

*Corresponding author

Paul T E Cusack, BScE, DULE 23 Park Ave. Saint John, NB E2J 1R2, Canada

Receiveed: 26 Oct 2023 Accepted: 02 Nov 2023 Published: 06 Nov 2023

Copyright

© 2023 Paul T E Cusack **OPEN ACCESS**

Abstract

A Physicist in Quebec (A. Michaud) calls for the resolution of the "Last Challenge of Modern Physics." We provide the solution to electromagnetism, mass, gravity and space in what follows.

Keywords: Modern Physics; AT Math; Astrotheology

Introduction

Introduction In this paper, we apply our knowledge of Astrotheology Mathematics to solve for what is called for by Michaud. It is assumed that readers are fa- miliar with AT Math [1,2].	E= $\hbar\nu$ M= $\hbar\nu$ Ln $\pi/\hbar=\nu$ M=Ln $\pi/\hbar=\sqrt{3}$ => eigenvector
Clairnaut ODE: $d^{2}E/dt^{2}-E=0$ $d^{2}E/dt^{2}-G=0$ $d^{2}E/dt^{2}=G$	(√3) ² -(√3)-1=2.67=SF Space:
t^2 -t-1=E =>GMP 2t-1=dE/dt d^2E/dt^2 =2	s=E ×t s= E t sin θ We know s=t
But we know dM/dt=2=d ² E/dt ² M=1/81=0.012345679 Add 1/7(7)+2=9 We know, when t= π ,	$E=1/\sin \theta=1/F=1/SF$ $t^{2}-t-1=E=1/SF$
$E = \pi^2 - \pi - 1 = 57.29^\circ = 1$ rad $t^2 - t - 1 = E = 1$ $t^2 - t - 1 = 1$	And, t/Ln t=π/Ln 1.618=6.528≈G0
$t^{-t-1=1}$ t^{2} -t-2=0 (t-2)(t+1)=0 t=2;-1	Ln π/h=0.347 1-0.347=6.52=G0
$t=2=dM/dt=d^{2}E/dt^{2}=G$	1-0.34/=0.32=00
Planck's	Einstein's Cosmological Constant=(π-e1) t-TE=-PE TE=KE+PE
E=ħν 1=6.626ν ν=1/ħ=1/6.626=0.1509 (Mass Gap)	$1/2Mc^2 - 1.5Mc^2 = Mc^2$
M=Ln t=Ln π=23.027	0.5-1.5=-1.0 Now the energy Density is:

ρ=-1/19905≈-1/2	
	$VF=1/2\rho v^2$
0.5-1.5=-1.0	$=1/2(-1/2)(1/\sqrt{2})^2$
0.5+1.0=1.5	=-1/8
ρ+E=1.5	=-1.25
	=E _{min}
Expansion Rate:	Conclusion
$\sqrt{\rho} = \sqrt{(-0.5)}$ $\sqrt{\rho} = -\sqrt{(1/2)}$	Thus ends Modern Physics.
$\sqrt{\rho} = -\sqrt{(1/2)}$	References
$-\sqrt{\rho}=1/\sqrt{2}$ Contraction	 Michaud. A. (2017). The Last Challenge of Modern Physics. J. of Phys. Math. DOI 10.4172/2090-0902.
=v=a=s=sin 45°=cos 45°	 Cusack, PTE (2016). Astrotheology, Cusack's Universe. J of Phys Math.

Cite this article: Paul T E Cusack (2023) Solving 'The Last Challenge of Modern Physics'. Research & Reviews Journal of Modern Physics, 3(1): 21-22.

Copyright: ©2023 **Paul T E Cusack.** This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.